― 249 ―offers a robust and reproducible system for recapitulating early events in atherosclerosis, including endothelial dysfunction in VECs and phenotypic switching of VSMCs. By leveraging disease-relevant Mφ stimulation with oxLDL and LPS, we demonstrated that the model captures key molecular and cellular hallmarks of atherogenesis. The ability to isolate and analyze individual vascular cell populations post-co-culture enables detailed mechanistic studies.Importantly, this platform proved effective in evaluating pharmacological responses to FDA-approved agents such as rosuvastatin and reparixin, supporting its utility for preclinical drug screening. These findings open avenues for applying the model to study patient-specific responses, especially in progeroid syndromes like Werner syndrome, where accelerated vascular aging is a hallmark.We partially succeeded in establishing a model of 3D coculture, where we cultured imVECs and imVSMCs on a low-attachment culture plate and found that they formed a sphere. We are currently in the process of validating various conditions. Once the optimum conditions are defined, we will start co-culturing imVECs, imVSMCs, and imMφ in this process. This approach will enable us to study atherosclerosis in a more relevant physiological setting. Ultimately, this approach may contribute to precision medicine efforts aimed at identifying personalized therapeutic strategies for vascular aging and atherosclerotic cardiovascular disease.AcknowledgmentsThis research was supported by the Japanese Government MEXT (Monbukagakusho) scholarship (S.K.P.), Chugai Foundation for Innovative Drug Discovery Science (C-FINDs) (N.T.), the JSPS KAKENHI Grant Number 23K18284 (N.T.).References1. Koshizaka, M., Maezawa, Y., Maeda, Y., Shoji, M., Kato, H., Kaneko, H., Ishikawa, T., Kinoshita, D., Kobayashi, K., Kawashima, J., Sekiguchi, A., Motegi, S.-I., Nakagami, H., Yamada, Y., Tsukamoto, S., Taniguchi, A., Sugimoto, K., Shoda, Y., Hashimoto, K., … Yokote, K.: Time gap between the onset and diagnosis in Werner syndrome: a nationwide survey and the 2020 registry in Japan. Aging (Albany NY) 12, 24940–24956 (2020).2. Huang, S., Lee, L., Hanson, N. B., Lenaerts, C., Hoehn, H., Poot, M., Rubin, C. D., Chen, D.-F., Yang, C.-C., Juch, H., Dorn, T., Spiegel, R., Oral, E. A., Abid, M., Battisti, C., Lucci-Cordisco, E., Neri, G., Steed, E. H., Kidd, A., … Oshima, J.: The spectrum of WRN mutations in Werner syndrome patients. Hum. Mutat. 27, 558–567 (2006).3. Chang, S., Multani, A. S., Cabrera, N. G., Naylor, M. L., Laud, P., Lombard, D., Pathak, S., Guarente, L., & DePinho, R. A. : Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat. Genet. 36, 877–882 (2004).4. Wu, Z., Zhang, W., Song, M., Wang, W., Wei, G., Li, W., Lei, J., Huang, Y., Sang, Y., Chan, P., Chen, C., Qu, J., Suzuki, K., Belmonte, J. C. I., & Liu, G.-H.: Differential stem cell aging kinetics in Hutchinson-Gilford progeria syndrome and Werner syndrome. Protein Cell, 9, 333–350 (2018).5. Paul, S. K., Oshima, M., Patil, A., Sone, M., Kato, H., Maezawa, Y., Kaneko, H., Fukuyo, M., Rahmutulla, B., Ouchi, Y., Tsujimura, K., Nakanishi, M., Kaneda, A., Iwama, A., Yokote, K., Eto, K., & Takayama, N.: Retrotransposons in Werner syndrome-derived macrophages trigger type I interferon-dependent inflammation in an atherosclerosis model. Nat. Commun. 15, 4772 (2024).
元のページ ../index.html#251