中外創薬 助成研究報告書2023
232/324

8. Nezu M and Suzuki N: Roles of Nrf2 in protecting the kidney from oxidative damage. International Journal 4. Nakai T, Saigusa D, Iwamura Y, Matsumoto Y, Umeda K, Kato K, Yamaki H, Tomioka Y, Hirano I, Koshiba S, Yamamoto M, Suzuki N: Esterification promotes the intracellular accumulation of roxadustat, an activator of hypoxia-inducible factors, to extend its effective duration. Biochemical Pharmacology, 197, 114939 (2022). doi: 10.1016/j.bcp.2022.114939. 6. Nakai T, Saigusa D, Kato K, Fukuuchi T, Koshiba S, Yamamoto M, Suzuki N: The drug-specific properties of hypoxia-inducible factor-prolyl hydroxylase inhibitors in mice reveal a significant contribution of the kidney compared to the liver to erythropoietin induction. Life Sciences, 346, 122641 (2024). doi: 10.1016/j.lfs.2024.122641. 12. Sato K, Hirano I, Sekine H, Miyauchi K, Nakai T, Kato K, Ito S, Yamamoto M, Suzuki N: An immortalized cell line derived from renal erythropoietin-producing (REP) cells demonstrates their potential to transform into myofibroblasts. Scientific Reports, 9, 11254 (2019). doi: 10.1038/s41598-019-47766-5. 13. Souma T, Nezu M, Nakano D, Yamazaki S, Hirano I, Sekine H, Dan T, Takeda K, Fong GH, Nishiyama A, Ito S, Miyata T, Yamamoto M, Suzuki N: Erythropoietin synthesis in renal myofibroblasts is restored by activation of hypoxia signaling. Journal of American Sociery of Nephrology, 27 (2), 428–438 (2016). doi: 10.1681/ASN.2014121184.― 230 ―onset anaemia due to erythropoietin deficiency. Nature Communications, 4, 1950 (2013). doi: 10.1038/ncomms2950.2. Yamazaki S, Hirano I, Kato K, Yamamoto M, Suzuki N: Defining the functionally sufficient regulatory region and liver-specific roles of the erythropoietin gene by transgene complementation. Life Sciences, 269, 119075 (2021). doi: 10.1016/j.lfs.2021.119075.3. Miyauchi K, Nakai T, Saito S, Yamamoto T, Sato K, Kato K, Nezu M. Miyazaki M, Ito S, Yamamoto M, Suzuki N: Renal interstitial fibroblasts coproduce erythropoietin and renin under anaemic conditions. EBioMedicine, 64, 103209 (2021). doi: 10.1016/j.ebiom.2021.103209.5. Nakai T, Iwamura Y, Kato K, Hirano I, Matsumoto Y, Tomioka Y, Yamamoto M, Suzuki N: Drugs activating hypoxia-inducible factors correct erythropoiesis and hepcidin levels via renal EPO induction in mice. Blood Advances, 7 (15), 3793–3805 (2023). doi: 10.1182/bloodadvances.2023009798.7. Sato K, Kumagai N, Suzuki N: Alteration of the DNA methylation signature of renal erythropoietin-producing cells governs the sensitivity to drugs targeting the hypoxia-response pathway in kidney disease progression. Frontiers in Genetics, 10, 1134 (2019). doi: 10.3389/fgene.2019.01134.of Molecular Sciences, 21, 2951 (2020). doi: 10.3390/ijms21082951.9. Nezu M and Suzuki N: Nrf2 activation for kidney disease treatment – a mixed blessing? Kidney International, 99 (1), 20–22 (2021). doi: 10.1016/j.kint.2020.08.033.10. Suzuki N, Iwamura Y, Kato K, Ishioka H, Konta Y, Sato K, Uchida N, Koida N, Sekine H, Tanaka T, Kumagai N, Nakai T: Crosstalk between oxygen signaling and iron metabolism in renal interstitial fibroblasts. Journal of Clinical Biochemistry and Nutrition, 74 (3), in press. doi:10.3164/jcbn.24-8. 202411. Souma T, Yamazaki S, Moriguchi T, Suzuki N, Hirano I, Pan X, Minegishi N, Abe M, Kiyomoto H, Ito S, Yamamoto M: Plasticity of renal erythropoietin-producing cells governs fibrosis. Journal of American Sociery of Nephrology, 24 (10), 1599–1616 (2013). doi: 10.1681/ASN.2013010030.

元のページ  ../index.html#232

このブックを見る